Asymmetric acetylcholinesterase is assembled in the Golgi apparatus.

نویسنده

  • R L Rotundo
چکیده

The synthesis, assembly, and processing of the multiple molecular forms of acetylcholinesterase (AcChoEase; acetylcholine acetylhydrolase, EC 3.1.1.7) in quail muscle cultures was studied by using lectins to distinguish enzyme molecules residing in different subcellular compartments. Special emphasis was given to the assembly of asymmetric AcChoEase molecules because these appear to be the predominant, if not unique, forms of AcChoEase at the vertebrate neuromuscular junction. All cell surface and secreted AcChoEase forms bind to immobilized wheat germ agglutinin, ricin, and concanavalin A, indicating that they have complex oligosaccharides. After treatment of muscle cells with a membrane-permeable irreversible AcChoEase inhibitor, there is a rapid reappearance of the globular monomeric, dimeric, and tetrameric AcChoEase forms. However, the collagen-tailed asymmetric form does not appear until about 90 min after treatment. Analysis of the AcChoEase oligosaccharides with lectins indicates maturation to complex forms over a 90-min period. A large fraction of the intracellular globular AcChoEase molecules bind only to concanavalin A, indicating that they are assembled in the rough endoplasmic reticulum. In contrast, all intracellular asymmetric AcChoEase binds to wheat germ agglutinin, and a significant fraction binds to ricin, indicating that this unique AcChoEase form is assembled from subunits that have previously acquired complex sugars. I conclude that assembly of asymmetric AcChoEase, hence acquisition of information specifying basal lamina localization, occurs in the Golgi apparatus.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Acetylcholinesterase in mammalian erythroid cells.

The biosynthesis of acetylcholinesterase in mammalian erythroid cells during differentiation and maturation was studied using a cytochemical method. Acetylcholinesterase was actively synthesized in basophilic erythroblasts I and II, and polychromatophilic erythroblasts, where it was present in the nuclear membrane, endoplasmic reticulum and Golgi apparatus. In orthochromatophilic erythroblasts ...

متن کامل

Regulation of acetylcholinesterase synthesis and assembly by muscle activity. Effects of tetrodotoxin.

The abundance and distribution of acetylcholinesterase (AChE) oligomeric forms expressed in skeletal muscle is strongly dependent upon the activity state of the cells. In this study, we examined several stages of AChE biogenesis to determine which ones were regulated by muscle activity. Inhibiting spontaneous contraction of tissue-cultured quail myotubes with tetrodotoxin (TTX) reduces AChE act...

متن کامل

Polarized Secretory Trafficking Directs Cargo for Asymmetric Dendrite Growth and Morphogenesis

Proper growth of dendrites is critical to the formation of neuronal circuits, but the cellular machinery that directs the addition of membrane components to generate dendritic architecture remains obscure. Here, we demonstrate that post-Golgi membrane trafficking is polarized toward longer dendrites of hippocampal pyramidal neurons in vitro and toward apical dendrites in vivo. Small Golgi outpo...

متن کامل

Differential Routing of Mindbomb1 via Centriolar Satellites Regulates Asymmetric Divisions of Neural Progenitors

Unequal centrosome maturation correlates with asymmetric division in multiple cell types. Nevertheless, centrosomal fate determinants have yet to be identified. Here, we show that the Notch pathway regulator Mindbomb1 co-localizes asymmetrically with centriolar satellite proteins PCM1 and AZI1 at the daughter centriole in interphase. Remarkably, while PCM1 and AZI1 remain asymmetric during mito...

متن کامل

Asymmetric CLASP-dependent nucleation of noncentrosomal microtubules at the trans-Golgi network.

Proper organization of microtubule arrays is essential for intracellular trafficking and cell motility. It is generally assumed that most if not all microtubules in vertebrate somatic cells are formed by the centrosome. Here we demonstrate that a large number of microtubules in untreated human cells originate from the Golgi apparatus in a centrosome-independent manner. Both centrosomal and Golg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 81 2  شماره 

صفحات  -

تاریخ انتشار 1984